NdFeB PERMANENT MAGNETIC MATERIAL

Market Research Report

Table of Contents

Execu	tive Summary	2
1.0	Introduction	14
1.1	What are NdFeB Magnets	14
1.2	Properties of Magnets	14
1.3	Permanent Magnet Material Development History	16
1.4	Types of NdFeB Magnet Products	18
1.5	NdFeB Magnet Grades	20
2.0	Principal NdFeB Magnet Production Methods	22
2.1	Sintered NdFeB Magnets	22
2.2	Bonded NdFeB Magnets	31
2.3	Hot-Pressed and Hot Deformed Magnets	32
2.4	Pricing and Cash Costs	34
3.0	NdFeB Magnet Market	36
3.1	High Performance Sintered NdFeB Magnet Market	37
3.	.1.1 New Energy Vehicles	37
3.	.1.2 Wind Power Generators	39
3.	.1.3 Inverter Air Conditioners	41
3.	.1.4 Energy Saving Elevators	43
3.	.1.5 Industrial Robots	45
3.	.1.6 Consumer Electronics	47
3.	.1.7 Defence Applications	49
3.	.1.8 High Performance NdFeB Magnet Demand Forecast to 2025	50
3.2	Bonded NdFeB Magnet and Hot Deformed Magnet Markets	51
4.0	Commercialisation	54
4.1	NdFeB Magnet Patent Protection	58
4.2	China	58
4.3	Outside China	61
5.0	Competitive Landscape	63
5.1	China	63
5.	.1.1 Jiangxi Jinli Permanent Magnet Technology Co., Ltd	63
5.	.1.2 Beijing Zhong Ke San Huan Hi-Tech Co., Ltd	71
5.	.1.3 Ningbo Yunsheng Co., Ltd	75
5.	.1.4 Yantai Zhenghai Magnetic Materials Co., Ltd	80
5.	.1.5 Earth-Panda Advanced Magnetic Material Co., Ltd	88
5.	.1.6 Zhejiang Yingluohua Magnet Co., Ltd	96
5.2	Japan	99
5.	.2.1 Proterial Ltd (formerly Hitachi Metals Ltd)	99
5.	.2.2 TDK Corporation	103

GOLDEN DRAGON CAPITAL

5.2.	3 Shin-Etsu Chemical	Co., Ltd	107
5.2.	4 Daido Electronics C	o., Ltd	116
5.3	South Korea		123
5.3.		Co., Ltd	
5.4			
5.4.	Neo Performance M	1aterials Inc	128
5.4.			
5.4.			
5.5			
5.5.		bH & Co. KG	
5.5.	2 GKN Powder Metall	urgy Inc	139
Referen	ces		140
Disclain	er		148

Figures

Figure 1: Various magnetic materials (left), NdFeB magnet product samples (right) (illustrative)	
Figure 2: Permanent magnet material industry development historyhistory	
Figure 3: AlNiCo magnet (left), SmCo magnet (center), NdFeB magnet (right)	
Figure 4: Types of permanent magnetic materials	
Figure 5: Magnetic properties of various permanent magnetic materials	18
Figure 6: China permanent magnet material market share (2023)	20
Figure 7: Sintered NdFeB magnetic properties	20
Figure 8: Sintered NdFeB magnet production method	
Figure 9: Sintered NdFeB magnet production - Vacuum strip casting furnace	
Figure 10: Sintered NdFeB magnet production - Hydrogen Decrepitation	
Figure 11: Sintered NdFeB magnet production - Jet mill	
Figure 12: Sintered NdFeB magnet production - Pressing in a perpendicular magnetic field	
Figure 13: Sintered NdFeB magnet production - Sintering furnace	
Figure 14: Sintered NdFeB magnet production - Wire cutting machines	
Figure 15: Sintered NdFeB magnet production - A continuous spray aluminium-zinc coating line	
Figure 16: Sintered NdFeB magnet production - Testing and evaluation are performed on magnet m	
Tigare to onterea har of magnet production results and craftation are performed on magnet in	
Figure 17: Sintered NdFeB magnet production – Schematic of process steps	
Figure 18: Diagram of the microstructure in neodymium magnets	
Figure 19: Schematic diagram of grain boundary diffusion process	
Figure 20: Comparison of magnetic material properties before and after grain boundary diffusion	
Figure 20. Comparison of magnetic material properties before and after grain boundary diffusion	30
Figure 21: Bonded NdFeB magnet production method	
Figure 22: Bonded NdFeB magnet injection molding production method	
Figure 23: Bonded NdFeB magnet compression molding production method	
Figure 24: Hot-pressed NdFeB magnet production method	
Figure 25: Production process of radially oriented hot-deformed ring magnet and axially oriented magnet	
Figure 26: Comparison between sintered process and hot press & hot deformed process for prepara	
NdFeB magnets	
•	
Figure 27: Material structure comparison between hot-deformed and sintered NdFeB magnets	
Figure 28: Ningbo Yunsheng Co., Ltd — NdFeB magnet production cash cost (2018 to 2022)	
Figure 29: Rare earth prices have experienced four fluctuations in history	
Figure 30 : Permanent magnet synchronous motor	
Figure 31: New energy vehicles use sintered NdFeB magnets produced by JL MAG	
Figure 32: Permanent magnet synchronous generator installed in a wind turbine	
Figure 33: Wind power generators use sintered NdFeB magnets produced by JL MAG	
Figure 34: Wind turbine farm	
Figure 35: Inverter air conditioner using NdFeB magnets	
Figure 36: Household appliances using NdFeB magnets	42
Figure 37: Household appliances use sintered NdFeB magnets produced by JL MAG	43
Figure 38: Geared elevator (left) and gearless elevator (right)	44
Figure 39: Energy-saving elevators using NdFeB magnets	44
Figure 40: Energy saving elevators use sintered NdFeB magnets produced by JL MAG	45
Figure 41: Industrial robots on a car assembly line using NdFeB magnets	46
Figure 42: Magnetic grippers used to pick up metal sheets	46
Figure 43: Industrial robots use sintered NdFeB magnets produced by JL MAG	
Figure 44: Inside a mobile phone	
Figure 45: Mechanical parts of a hard disk drive	
Figure 46: Consumer electronics use sintered NdFeB magnets produced by JL MAG	
Figure 47 Global high performance NdFeB market share 2022A	
Figure 48 Global high performance NdFeB market share 2025E	
Figure 49: New energy vehicle NdFeB magnet demand forecast (2021A to 2025E)	
Figure 50: Both ferrite magnets and NdFeB magnet products are used in automobiles	
g = . = . = . =	

GOLDEN DRAGON CAPITAL

Figure 51: Automobile application of bonded NdFeB magnets produced by JL MAG	
Figure 52: Application of bonded NdFeB magnets produced by JL MAG	53
Figure 53: Hot deformed NdFeB magnet products	
Figure 54: High-performance NdFeB magnetic material industrial chain	55
Figure 55: Rare earth industrial supply chain by country	
Figure 56: China NdFeB permanent magnet production capacity 2018 to 2022H1	61
Figure 57: China vs global high-performance NdFeB production 2015 to 2020	
Figure 58: JL MAG - Magnet production factories	64
Figure 59: JL MAG — NdFeB rough sintering annual production capacity (2018 to 2025E)	65
Figure 60: JL MAG — NdFeB production flowsheet	66
Figure 61: JL MAG — Schematic diagram of sintered NdFeB grain structure and grain boundary diffusion	on67
Figure 62: JL MAG — Customers	
Figure 63: JL MAG — NdFeB magnet revenue share (2017 to 2021)	69
Figure 64: JL MAG — NdFeB magnet production and sales (2017 to 2021)	69
Figure 65: JL MAG — Operating cost per tonne (CNY) comparison with other NdFeB magnet producers	
Figure 66: JL MAG — Gross profit margin comparison to other companies (2017 to 2022 Q1-Q3)	71
Figure 67: JL MAG — Net profit margin comparison to other companies (2017 to 2022 Q1-Q3)	71
Figure 68: Zhong Ke San Huan — Sintered NdFeB magnet manufacturing companies	72
Figure 69: Zhong Ke San Huan — Bonded NdFeB magnet manufacturing company	73
Figure 70: Ningbo Yunsheng — Ningbo NdFeB magnet manufacturing facility facility	
Figure 71: Ningbo Yunsheng — NdFeB production workflow	
Figure 72: Ningbo Yunsheng Bonded Magnet Co., Ltd	76
Figure 73: Ningbo Yunsheng — NdFeB Bonded magnet production process	77
Figure 74: Ningbo Yunsheng — Diagram of the grain boundary diffusion technology	78
Figure 75: ZHmag - Headquarters Yantai Development Zone, Shandong Province	
Figure 76: ZHmag - NdFeB magnet manufacturing process	82
Figure 77: ZHmag — Evolution of three core technologies	82
Figure 78: ZHmag – The principle of TOPS	83
Figure 79: ZHmag – TOPS and regular magnets microstructure comparison	83
Figure 80: ZHmag – The principle of THRED	
Figure 81: ZHmag – THRED magnet grades	84
Figure 82: ZHmag - Rare earth resource balancing strategy	84
Figure 83: ZHmag – Operating income and growth rate (2018 to 2022 Q1-Q3)	
Figure 84: ZHmag – Net profit attributable to parent company and growth rate (2018 to 2022 Q1-Q3)	
Figure 85: ZHmag - Distribution of the Company's revenue by application (2021)	
Figure 86: ZHmag – Gross profit margin and net profit margin (2018 to 2022 Q1-Q3)	
Figure 87: ZHmag – Company expense ratio (2018 to 2022 Q1-Q3)	
$\label{thm:panda-lujiang} \textbf{Figure 88: Earth-Panda-Lujiang High-tech Industrial Development Zone Production Base, Hefei City} \\$	89
Figure 89: Earth-Panda — Rare Earth Application Industrial Park Production Base, Baotou City	90
Figure 90: Earth-Panda — NdFeB permanent magnet production process	93
Figure 91: Zhejiang Yingluohua - Hengdian Electronic Industrial Park, Dongyang City, Zhejiang	96
Figure 92: Zhejiang Yingluohua - Magnet manufacturing process	98
Figure 93: Zhejiang Yingluohua - Magnet production equipment	98
Figure 94: Proterial — Production bases in Japan and China	100
Figure 95: NEOMAX® NdFeB magnet products	100
Figure 96: NEOMAX® NdFeB magnet product specifications	101
Figure 97: Proterial — Magnetic material products	
Figure 98: Application of NEOMAX® Products used in EV	
Figure 99: Application of NEOMAX® Products used in Consumer Products	
Figure 100: TDK — Neodymium magnet manufacturing process	
Figure 101: TDK Corporation — NEOREC® magnet product specifications	
Figure 102: TDK — Dy diffusion obstructed by impurities	
Figure 103: TDK Corporation — NdFeB magnet material development	
Figure 104: TDK Corporation — NEOREC® 50BF/47HF/45MHF/45BF Dy free material	105

GOLDEN DRAGON CAPITAL

Figure 105: TDK Corporation — Magnet automotive application guideguide	106
Figure 106: TDK Corporation — Magnet industrial application guide	106
Figure 107: TDK Corporation — Magnet office automation application guide	107
Figure 108: TDK Corporation — Magnet home appliance application guide	107
Figure 109: Shin-Etsu — Magnet production base and sales office worldwide network	108
Figure 110: Shin-Etsu — Magnet production base layout	109
Figure 111: Shin-Etsu — Takefu Plant in the Fukui Prefecture	109
Figure 112: Shin-Etsu — Shin-Etsu Magnetic Materials Vietnam Co., Ltd	109
Figure 113: Shin-Etsu — Magnet sintering process	
Figure 114: Shin-Etsu — Magnet machining process	113
Figure 115: Shin-Etsu — N Series perpendicular magnetic field press magnet performance chart	114
Figure 116: Shin-Etsu — N Series parallel magnetic field press magnet performance chart	114
Figure 117: Shin-Etsu — Recycling of rare earth magnets	115
Figure 118: Shin-Etsu — Rare earth magnet applications for EVs	116
Figure 119: Daido - Headquarters and factory Nasubigawa, Nakatsugawa, Gifu, Japan	
Figure 120: Daido – Magnetic property map	
Figure 121: Daido - Manufacturing process of NEOQUENCH-DR	118
Figure 122: Daido – Radially oriented, anisotropic Nd-Fe-B ring magnets	118
Figure 123: Daido – Applications of NEOQUENCH-DR, EPS motors (left), servomotor (right)	
Figure 124: Daido – Forming methods of NEOQUENCH-P	
Figure 125: Daido – Isotropic polymer bonded Nd-Fe-B magnets	
Figure 126: Daido – Injection molded magnets (left), Overmolded or insert molded assemblies (right	
Figure 127: Daido - Compression molded magnets (left), Compression molded magnets assembl	
shaft, yoke and other parts. (right)	121
Figure 128: Daido - Applications of NEOQUENCH-P, Cell phone vibration motors (top left), actua	
electrical equipment (top right), HDD spindle motors (bottom)	122
Figure 129: SGI — Magnet production bases	
Figure 130: SGI — Magnet production CAPA plan	124
Figure 131: SGI — South Korea magnet production base	
Figure 132: SGI — Vietnam magnet production base (Q1/24)	
Figure 133: SGI — NdFeB magnet manufacturing process	
Figure 134: SGI — NdFeB magnet product specifications	
Figure 135: SGI — NdFeB magnet product applications and customers	
Figure 136: Neo Performance Materials — Business operations	
Figure 137: Neo — Magnequench Tianjin production base	
Figure 138: Neo — Magnequench Chuzhou production base	
Figure 139: Neo — Magnequench jet casting of magnet powder	
Figure 140: Neo — Powders for Bonded NdFeB magnets (MQP™)	
Figure 141: MP Materials – Permanent magnet factory under construction Fort Worth, Texas	
Figure 142: USA Rare Earth — Round Top Mountain, Texas	
Figure 143: USA Rare Earth — Magnet production facility in Stillwater, Oklahoma	
Figure 144: VAC — Factory in Hanau, Germany	
Figure 145: VAC — VACODYM® production process	
Figure 146: VAC — VACODYM® Product Specifications	
Figure 147: Neorem Magnets Oy — Principal production process flowsheet	
Figure 148: NEOREM® Products	
Figure 1/9: VAC - Cround breaking coromony for Sumter County South Carolina magnet plant	

Tables

Table 1: Main performance indicators required for magnetic materials	15	
Table 2: Characteristics of soft magnetic material and hard magnetic material	16	
Table 3: Comparison of the main rare earth permanent magnet product types	17	
Table 4: Comparison of the three major NdFeB magnet product types	19	
Table 5: NdFeB magnet working temperature grades	21	
Table 6: Summary of sintered NdFeB magnet product indicators	21	
Table 7: Performance indicators of leading sintered NdFeB permanent magnet producers	22	
Table 8: Comparison of three main types of NdFeB permanent magnets	22	
Table 9: JL MAG — Grain boundary diffusion technology	30	
Table 10: NdFeB magnet material unit consumption in commercial applications	36	
Table 11: Performance comparison of different drive motors using NdFeB magnets	37	
Table 12: Performance comparison of inverter air conditioner vs fixed frequency air condition	er 41	
Table 13: Defence applications for neodymium	49	
Table 14: Global high performance NdFeB demand estimates to 2025 (tonnes)	50	
Table 15: Major Chinese NdFeB magnet companies and related production capacity (non-exh	austive)	59
Table 16: Customers of the major Chinese NdFeB magnet companies	59	
Table 17: Overseas NdFeB magnet companies in China	60	
Table 18: Major NdFeB magnet companies outside China current and planned production ca	pacity62	
Table 19: New entrant sintered NdFeB magnet companies outside China planned production	capacity	62
Table 20: JL MAG — Planned production capacity expansions	65	
Table 21: JL MAG — Core technology and main application fieldsfields	66	
Table 22: Ningbo Yunsheng — Customers	79	
Table 23: Yantai Zhenghai Magnetic Materials Co., Ltd — Customers	85	