
SODIUM-ION BATTERY

Market Research Report

Table of Contents

Executive Summary		2
1.0	Introduction	22
1.1	Discovery	22
1.2	Working Principal	23
1.3	Component Materials	25
1.4	Product Performance	25
1.	4.1 Safety Performance	26
1.	4.2 Rate Performance	27
1.	4.3 Low Temperature Performance	28
1.	4.4 Cycle Life Performance	29
1.	4.5 Energy Density	29
1.5	Comparison to Lead-acid and Lithium-ion Batteries	29
1.6	Supportive Government Development Policies	31
2.0	Component Materials	34
2.1	Cathode Material	34
2	.1.1 Layered Transition Metal Oxides Cathode Material	37
2	.1.2 Polyanionic Cathode Material	44
2	.1.3 Prussian Blue Cathode Material	49
2.2	Anode Material	58
2	.2.1 Hard Carbon	62
2	.2.2 Soft Carbon	73
2	.2.3 Graphite	74
2.3	Electrolyte Material	75
2.4	Current Collector	78
3.0	Principal Battery Production Method	78
3.1	Cash Cost Analysis	80
4.0	Commercialisation	84
4.1	Energy Storage Systems	84
4.2	Two-Wheeler Electric Vehicles	88
4.3	Low-Speed Electric Vehicles	90
5.0	Competitive Landscape	94
5.1	Sodium-ion Battery Manufacturing Companies	97
5	.1.1 Chinese Battery Manufacturers	97
5	.1.2 Other Major Battery Manufacturers	116
5.2	Cathode Material Companies	127
5.3	Anode Material Companies	130
5.4	Electrolyte Material Companies	141
5.5	Current Collector Material Companies	142

6.0	Market Size	.144
6.1	Sodium-ion Battery Forecast	.144
6.2	Sodium Carbonate Demand	145
Refere	nces	.149
Disclai	mer	152

Figures

Figure 1: Working principal of the 'rocking chair battery' (illustrative)	22
Figure 2: Sodium-ion batteries industry development history	23
igure 3: High-performance sodium-ion batteries (illustrative)	23
igure 4: Working principal of a sodium-ion battery (illustrative)	24
igure 5: Safety tests done on 18650 type sodium-ion batteries	26
Figure 6: Safety tests on sodium-ion batteries	26
igure 7: Thermal runaway risk in lithium-ion batteries which also applies to sodium-ion batteries	27
Figure 8: Sodium-ion battery discharge curve and corresponding temperature changechange	28
Figure 9: Sodium-ion battery operating temperature (-40°C to 80°C)	
igure 10: Sodium-ion batteries are applicable for large-scale energy storage and low-speed electric vehicles	
igure 11: Number of two-wheeler electric vehicles in China	32
Figure 12: Specific capacity and average voltage of different sodium-ion cathode materials	35
Figure 13: Summary of synthesis, challenges and solutions for sodium-ion cathode materials	
Figure 14: Comparison of existing sodium-ion cathode materials	
Figure 15: Categories of NaxMO ₂ layered transition metal oxide cathode material	
Figure 16: Tunnel structure transition metal oxide	
Figure 17: Increased specific capacity of layered metal oxides doped with iron	
Figure 18: Electrochemical summary of layered oxide sodium-ion cathode materials, comparing voltage, capacity a	
energy density	
Figure 19: Manganese dioxide to prepare sodium manganate reaction process	
Figure 20: Polyanionic crystal structures	
Figure 21: Polyanionic crystal structure of (a) maricite NaFePO4 and (b) olivine NaFePO4	
Figure 22: Polyanionic crystal structure of NASICON type Na ₃ V ₂ (PO ₄) ₃	
Figure 23: Polymorphism in Na ₂ CoP ₂ O ₇ a) orthorhombic, b) triclinic and c) tetragonal formsforms	
Figure 24: Schematic representation of the Na₃V₂(PO₄)2F₃ structure viewed along the y axis	
Figure 25: (a) Schematic diagram of anhydrous cube PBA structure; (b) Schematic diagram of PBA with crystal wat	
cube structure	
Figure 26: NiFe-PBA material thermogravimetric curve	
Figure 27: Production with few defects and low crystal water using sodium citrate as chelating agent (blue line)	
Figure 28: Polydopamine (PDA) coated PBAs (NFF) improves electrochemical performance	
Figure 29: Electrochemical performance of PBAs is optimal when the ratio of doped nickel and cobalt is 2:3	
Figure 30: Increase in cycle times after Na2NiFe(CN)6, Na2MnFe(CN)6 doped elements	
Figure 31: Sodium ferrocyanide principal production flowsheet	
Figure 32: Co-precipitation method principal production flowsheet	
Figure 33: Hydrothermal method principal production flowsheet	
Figure 34: Ball milling method principal production flowsheet	
Figure 35: CATL presenting its first-generation sodium-ion battery product concept (2021)	
Figure 36: CATL's first-generation of sodium-ion batteries product features	
igure 37: CATL sodium-ion battery Prussian blue compound cathode material structure	56
Figure 38: Schematic structural diagram & electron microscope photo of hard carbon, soft carbon, and graphite	59
Figure 39: Specific capacity and average voltage of different sodium-ion anode materials	
Figure 40: Future development trends of anode materials used in sodium-ion batteriesbatteries	
Figure 41: "House of Cards" model of hard carbon	
-igure 42: Hard carbon sodium storage mechanisms	64
Figure 43: Comparison of different hard carbon anode production processes	66
Figure 44: Hard carbon has high specific capacity and low initial Coulombic efficiency	74
Figure 45: Composition and structure of graphite anode material	
Figure 46: Expanded graphite has a strong sodium storage capacity	
igure 47: Research progress in Sodium-ion Battery electrolyte types	
Figure 48: Future development trends of electrolyte material used in sodium-ion batteriesbatteries	
Figure 49: Principal manufacturing process of sodium-ion batteries and lithium-ion batteries is the same	
Figure 50: Sodium-ion battery electrode principal processing flowsheetflowsheet	
Figure 51: Packaging of sodium-ion batteries (illustrative)	
Figure 52: (a) abundance of main elements in Earth's crust; (b) uneven distribution of lithium on the earth	
Figure 53: Comparison of sodium-ion battery and lithium-ion battery cash cost	
Figure 54: Sodium-ion batteries commercial applications	
Figure 55: Main application scenarios of sodium-ion batteries in the field of energy storagestorage	
Figure 56: Large-scale sodium-ion battery energy storage station in Nanning, Guangxi	
Figure 57: Sales volume of electric two-wheelers in China	
Figure 58: Comparison of lead-acid batteries, sodium-ion batteries, and lithium-ion batteries	89

Figure 59: Main considerations for two-wheeler electric vehicle users when purchasing a vehicle	89
Figure 60: Technical requirements for small and medium-sized low-speed electric passenger vehicles	91
Figure 61: China Retail shares of different levels in the new energy vehicle market (by year)	92
Figure 62: China Retail shares of different levels in the new energy vehicle market (by month)	92
Figure 63: CATL AB hybrid integrated battery solution	93
Figure 64: CATL AB hybrid integrated battery solution	93
Figure 65: China Sodium-ion battery industry map	
Figure 66: Zhongke Haina sodium-ion battery has a capacity retention rate greater than 90% after 200 cycles	99
Figure 67: Zhongke Haina leading sodium-ion battery products	
Figure 68: Zhongke Haina sodium-ion battery 30kW/100kWh energy storage system	
Figure 69: Zhongke Haina sodium-ion battery cooperation projectsprojects	
Figure 70: Cycle performance and energy density of anode-free sodium-ion batteries have been improved	102
Figure 71: JAC EV Demo car using a 25 kilowatt-hour (kWh) sodium-ion battery developed by Zhongke Haina	
Figure 72: JAC Yiwei car using sodium-ion batteries	104
Figure 73: Sehol E10X, which the new Yiwei EV appears to be a rebranded version	104
Figure 74: JAC sodium-ion battery product used in its EV	105
Figure 75: Layout of sodium-ion battery industry chain for CATL	
Figure 76: Performance of the first-generation sodium-ion battery in CATL	
Figure 77: CATL AB-type sodium-ion battery	107
Figure 78: AB battery solutions to achieve complementary advantages	107
Figure 79: Prussian white cathode material (illustrative)	
Figure 80: Natrium Energy sodium-ion battery products	
Figure 81: Emma Technology released a sodium-ion battery developed by Natrium Energy Energy	
Figure 82: SVOLT sodium-ion battery prototype	
Figure 83: Tianjin Lishen Battery Joint-Stock Co., Ltd — Sodium-ion battery	
Figure 84: Natron Energy's high-cycle Bluetray sodium-ion batterybatron Energy's high-cycle Bluetray sodium-ion battery	117
Figure 85: Batteries produced by Natron with Prussian blue compounds on both cathode and anode material	
Figure 86: Natron Energy Blue Pack sodium-ion battery	
Figure 87: Faradion sodium-ion battery for new energy vehicles	
Figure 88: Faradion sodium-ion battery soft packs	
Figure 89: Altris cathode material comparison chart (illustrative)	
Figure 90: Altris sodium-ion battery cell	
Figure 91: Northvolt sodium-ion battery	
Figure 92: NAIADES sodium-ion battery prototype	
Figure 93: Tiamat sodium-ion battery product development and applicationapplication	
Figure 94: Jimsar County, Changji Hui Autonomous Prefecture Government in Xinjiang Uygur Autonomous Reg	
Hanhang held a project signing ceremony	
Figure 95: Hunan Zhongke Electric Co., Ltd — Electrochemical performance chart of its hard carbon products	
Figure 96: Mainstream producers of sodium hexafluorophosphate	
Figure 97: Ranking of battery aluminium foil sales (2021)	
Figure 98: Sodium carbonate principal processing flowsheet	
Figure 99: China demand for sodium carbonate (2015-2020)	
Figure 100: Distribution of sodium carbonate consumption	
Figure 101: Sodium carbonate production capacity in China	148

Tables

Table 1: Comparison between the sodium-ion battery and lithium-ion battery component material systems	25
Table 2: Energy density and cycle time comparison of mainstream sodium-ion batteries	29
Table 3: Comparison of physicochemical properties between lithium and sodiumand sodium	31
Table 4: Performance comparison of lead-acid batteries, lithium-ion batteries, and sodium-ion batteries	31
Table 5: Global government sodium-ion battery advocation policies	33
Table 6: Performance comparison of mainstream sodium-ion battery cathode materials	36
Table 7: Summary of Electrochemical Performance of Sodium-ion Cathode Materials	36
Table 8: Electrochemical performance of layered oxides at 0.1C	40
Table 9: O3-Type LTMO cathode materials	41
Table 10: P2-Type LTMO cathode materials	42
Table 11: Common LTMO cathode materials used in sodium-ion batteries	42
Table 12: Product performance of mainstream LTMO cathode materials	
Table 13: Product performance of mainstream polyanionic cathode materials	
Table 14: Product performance of mainstream polyanionic cathode materials	
Table 15: Improvement of electrochemical properties of NASICON-type cathode materials after modification	
Table 16: Product performance of mainstream sodium-ion batteries using polyanionic cathode material	
Table 17: Electrochemical performance of mainstream Prussian blue compound cathode materials	
Table 18: Performance comparison of mainstream Prussian blue cathode material types	
Table 19: Comparison of mainstream Prussian blue cathode material production methods	
Table 20: Sodium-ion battery companies using Prussian cathode material	
Table 21: Sodium-ion battery Prussian blue cathode material plans	57 57
Table 22: China production capacity distribution of sodium cyanide	
Table 23: Mainstream overseas cyanide producers	
Table 24: Properties of commonly used anode materials for sodium-ion batteries	
Table 25: Performance comparison of anode materials used in sodium-ion batteries	
Table 26: Comparison of hard carbon precursor principal production methods	
Table 27: Performance comparison of hard carbon suppliers	
Table 28: Comparison of advantages and disadvantages of mainstream hard carbon precursors	
Table 29: Comparison of costs, yields, and expenses of various hard carbon precursors	
Table 30: Performance comparison of hard carbon anodes produced from biomass precursors	
Table 31: Performance comparison of hard carbon anodes produced from synthetic polymer precursors	
Table 32: Performance comparison of hard carbon prepared from fossil fuel-based precursors	
Table 33: Performance comparison of soft carbon and hard carbon	
Table 34: Physical and chemical properties of electrolyte salt materials used in sodium-ion batteries	
Table 35: Advantages and disadvantages of commonly used electrolyte solvents for sodium-ion batteries	
Table 36: Performance requirements between battery aluminium foil and traditional foil	
Table 37: Comparison of basic properties of lithium and sodium	
Table 38: Sodium-ion cell cost vs lithium-ion cell cost (current technology)	
Table 39: Sodium-ion cell cost vs lithium-ion cell cost (future technology)	
Table 40: Complete life cycle cost of electricity of 4 kinds of electrochemical energy storage forms	
Table 41: Current cost comparison of different energy storage batteries	
Table 42: Sodium-ion battery energy storage application projects	
	89
Table 44: Application status of sodium-ion battery electric two-wheeled vehicles in China	
Table 45: China sodium-ion battery new energy passenger vehicle products	
Table 46: Global development of major sodium-ion battery companies and commercialisation	
Table 47: Estimated production capacity of sodium-ion batteries (2022-2023)	
Table 48: Summary of leading sodium-ion battery manufacturing companies in China	
Table 49: Zhongke Haina cylindrical and soft pack sodium-ion battery product indicators	
Table 50: Zhongke Haina module sodium-ion battery product indicators	
Table 51: Zhongke Haina sodium-ion battery related patents	
Table 52: CATL sodium-ion battery related patents	
Table 53: CATL sodium-ion battery performance comparison	
Table 54: Natrium Energy sodium-ion battery related patents	
Table 55: Lifang New Energy sodium-ion battery related patents	
Table 56: Summary of overseas sodium-ion battery manufacturing companies	
Table 57: Faradion sodium-ion battery related patents	
Table 58: Faradion development milestones	
Table 59: Leading sodium-ion battery cathode material companies in China	
Table 60: Estimated sodium-ion battery cathode material production capacity output (2022-2023)	128

Table 61: Ronbay Technology sodium-ion battery cathode material products	128
Table 62: Dangsheng technology sodium-ion battery cathode performance	129
Table 63: Leading sodium-ion battery anode material companies in China	13
Table 64: Leading sodium-ion battery anode material companies ex China	
Table 65: Performance comparison of hard carbon products of mainstream anode manufacturers	132
Table 66: Chengdu Baisige Technology Co., Ltd — Hard carbon related patents	
Table 67: BTR New Material Group Co., Ltd — Hard carbon anode material products	135
Table 68: BTR New Material Group Co., Ltd — Hard carbon related patents	135
Table 69: Ningbo Shanshan Co., Ltd — sodium-ion battery anode material related patents	
Table 70: Ningbo Shanshan Co., Ltd — Hard carbon related patents	136
Table 71: Hunan Zhongke Electric Co., Ltd — Hard carbon related patents	
Table 72: Hunan Zhongke Electric Co., Ltd — Anode material products using hard carbon	138
Table 73: Shenzhen XFH Technology Co., Ltd sodium-ion battery anode material related patents	
Table 74: Shenzhen XFH Technology Co., Ltd — Hard carbon related patents	
Table 75: Leading sodium-ion battery electrolyte material companies in China	14
Table 76: Leading battery aluminium foil companies in China	143
Table 77: Calculation of sodium-ion battery market size	144
Table 78: Derived demand for sodium carbonate market size forecast (2019A-2025E)	