LFP CATHODE MATERIAL

Market Research Report

Table of Contents

Executive Summary	2
1.0 Introduction	15
1.1 LFP Cathode Material Industry Development Trends	15
1.2 Lithium-Ion Battery Technology	18
1.3 Mainstream Cathode Materials	24
1.4 Cathode Positioning within the Industry Chain	26
2.0 Lithium Iron Phosphate Cathode Material	27
2.1 Structure of Phospho-Olivines	27
2.2 LFP Working Principal	27
2.3 LFP Product Performance	28
2.3.1 Advantages	28
2.3.2 Disadvantages	30
3.0 Lithium Iron Phosphate Cathode Material Processing Methods	31
3.1 Principal LFP Production Processes	31
3.1.1 Solid Phase Synthesis	33
3.1.2 Liquid Phase Synthesis	38
3.2 LFP Product Modification Methods	41
3.2.1 Nanoization	41
3.2.2 Carbon Coating	42
3.2.3 Doping	43
3.3 LFP Upstream Raw Materials	44
3.3.1 Lithium Carbonate	44
3.3.2 Ferrous Oxalate	48
3.3.3 Ferric Phosphate	49
3.3.4 Iron Powder	53
3.3.5 Iron Oxide	53
3.3.6 Ferric Nitrate	54
3.3.6 Phosphoric Acid	55
3.3.7 Monoammonium Phosphate	58
3.4 LFP Final Product Specifications	59
4.0 Chinese Lithium Iron Phosphate Standards	67
4.1 Lithium Iron Phosphate	67
4.1.1 GB/T 30835-2014 Carbon composite lithium iron phosphate cathode ma	aterial for lithium-ion
batteries	67
4.1.2 YS/T 1027-2015 Lithium iron phosphate	68
4.1.3 GB/T 33822-2017 Nano composite lithium iron phosphate	
4.2 Lithium Iron Phosphate Upstream Raw Materials	71
4.2.1 GB/T 11075-2013 Lithium carbonate	71

	4.2.2	YS/T 582-2013 Battery grade lithium carbonate	71
	4.2.3	YS/T 546-2021 High purity lithium carbonate	
	4.2.4	YS/T 1552-2022 Crude lithium carbonate	
	4.2.5	GB/T 23853-2022 Lithium carbonate made of brine	74
	4.2.6	HG/T 4701-2021 Iron phosphate for battery minerals	
	4.2.7	GB/T 2091-2008 Phosphoric acid for industry use	
	4.2.8	HG/T 4069-2022 Wet purified phosphoric acid for industry use	
	4.2.9	HG/T 5742-2020 Ammonium dihydrogen phosphate for battery materials	
5.0	Comr	nercialisation	78
5.	l LFI	P Intellectual Property Rights	78
5.	2 Ne	w Energy Vehicles	78
5.	3 En	ergy Storage Systems	87
6.0	Comp	petitive Landscape	97
6.	1 Ch	na LFP Cathode Material Production	97
6.	2 Ov	erseas LFP Cathode Material Production and Proposed Projects	101
	6.2.1	Asia (excl China)	101
	6.2.2	North America	106
	6.2.3	Europe	110
	6.2.4	Africa	115
7.0	Mark	et Pricing	115
7.	1 LFI	Cathode Material	115
8.0	Mark	et Size Forecast	119
Refe	erences		122
Арр	endix 1: H	lunan Yuneng New Energy Battery Material Co., Ltd	129
1.0	Huna	n Yuneng New Energy Battery Material Co., Ltd	130
1.1	Co	porate Overview	130
1.2	2 LFF	Cathode Material Business	130
1.3	3 Fin	ancials (IUSD: 7CNY)	142
1.4	4 Co	mpetitor Analysis (IUSD: 7CNY)	147
D:			150

Figures

Figure 1: China installed capacity of LFP and ternary power batteries (GWh)	15
Figure 2: Global lithium-ion battery industry by cathode materials by shipment volume (2019)	
Figure 3: Global lithium-ion battery industry by cathode materials by shipment volume (2023)	
Figure 4: Global LFP cathode material production (thousand tonnes)	
Figure 5: LFP cathode material commercial applications	
Figure 6: Changes in BYD LFP battery system energy density (Wh/kg)	
Figure 7: Parts of a lithium-ion battery	
Figure 8: Discharging and charging of a lithium-ion battery	
Figure 9: Component materials and auxiliary materials used to manufacture cathode material	
Figure 10: Schematics of inner structures of commercial Lithium-ion Batteries	
Figure 11: Tesla Model 3 lithium iron phosphate prismatic battery pack (illustrative)	
Figure 12: Lithium-ion battery component material average cost composition	
Figure 13: Electric vehicle average cost composition	
Figure 14: Power system average cost composition	24
Figure 15: Radar chart of several cathode material types and their product indicators	
Figure 16: Lithium-ion battery industry chain	
Figure 17: LFP schematic of the crystal structure	
Figure 18: Charging and discharging of a LiFePO ₄ battery	
Figure 19: Working principal of LFP cathode material	
Figure 20: LFP voltage profile	
Figure 21: LFP two-phase crystal structure	29
Figure 22: LFP cycle life	30
Figure 23: LFP Battery Pack Thermal Management Enables All-Climate Operation	31
Figure 24: Solid-phase synthesis and liquid-phase synthesis method typestypes	32
Figure 25: Distribution of LFP cathode material production (by method)	32
Figure 26: LFP cathode material (illustrative)	33
Figure 27: Solid-phase synthesis method principal flowsheet	
Figure 28: Solid-phase synthesis — carbothermal reduction method principal flowsheet	
Figure 29: BTR — Solid-phase processing flowsheet for the production of LFP cathode material	
Figure 30: Solid-phase synthesis — carbothermal reduction method using ferric oxide flowsheet	
Figure 31: Liquid-phase synthesis — autothermal evaporating method used by Shenzhen Dynanonic	
Figure 32: LFP product modification — Nanoization	
Figure 33: LFP product modification — Carbon coating	
Figure 34: LFP product modification — Capacity with carbon coating	
Figure 35: LFP product modification — Electrochemical performance modified by mg doping	
Figure 36: Process flowsheet for extracting lithium from spodumene by the sulfuric acid method	
Figure 36. Process flowsheet for extracting lithium from spodumene by the sulfure acid method Figure 37: Process flowsheet for extracting lithium from lepidolite by sodium sulfate roasting method	
· · · · · · · · · · · · · · · · · · ·	
Figure 38: Flowsheet for extracting lithium from brines	
Figure 39: Ferric phosphate iron production flowsheet	
Figure 40: Ferric phosphate sodium and ammonia production flowsheet	
Figure 41: Processing flowsheet of producing iron phosphate by sodium methodmethod	
Figure 42: Processing flowsheet of producing iron phosphate by ammonia methodmethod	
Figure 43: Wanrun New Energy — ferric phosphate processing flowsheetflowsheet	
Figure 44: Wanrun New Energy — vertically integrated LFP cathode material processing flowsheet	
Figure 45: Shenzhen Dynanonic — Ferric nitrate processing flowsheetflowsheet	
Figure 46: Phosphoric acid preparation methods	
Figure 47: Process flowsheet for producing phosphoric acid by dihydrate method	
Figure 48: Process flowsheet for producing purified phosphoric acidacid	
Figure 49: Flowsheet for producing industrial grade monoammonium phosphate using wet phosph	
acid	59
Figure 50: Flowsheet for two-step production of industrial grade monoammonium phosphatephosphate	59
Figure 51: China EV-Type lithium-ion battery installed capacity	79
Figure 52: Energy density of LFP Qilin batteries made from CATL and used by Tesla Models 3 and Y	

Figure 53: CATL Qilin battery (illustrative)	80
Figure 54: Tesla Model 3 and Model Y	81
Figure 55: Energy density of LFP blade battery made by BYD and used by BYD Models Han and Tang	81
Figure 56: BYD Blade battery (illustrative)	81
Figure 57: BYD Han EV and Tang EV	82
Figure 58: Geely — Short Blade Battery	83
Figure 59: LFP batteries installed capacity (2022)	83
Figure 60: BYD Qin Plus EV model using an LFP battery has 400km~600km mileage per charge	85
Figure 61: China installed capacity of LFP batteries used in buses (Jan-2021 to Jul 2022)	86
Figure 62: China installed capacity of LFP batteries used in special cars (Jan-2021 to Jul 2022)	86
Figure 63: China installed capacity of LFP batteries used in passenger cars (Jan-2021 to Jul 2022)	87
Figure 64: Installed capacity and proportion of LFP batteries and ternary batteries (Jan-2020 to Jul 202	
Figure 65: Energy storage product market share (2021)	89
Figure 66: Electrochemical energy storage market share (2021)	89
Figure 67: Global electrochemical energy storage installed capacity	90
Figure 68: LFP batteries applied in energy storage industry	90
Figure 69: Proportion of installed capacity of electrochemical energy storage by battery type	91
Figure 70: One-time input cost of mainstream energy storage battery types (CNY per kWh)	
Figure 71: Full-cycle cost of mainstream energy storage battery types (CNY per kWh)	93
Figure 72: Cycle life mainstream energy storage battery types	
Figure 73: 5G base station in China	
Figure 74: 5G base station construction forecast (2019 to 2025E)	
Figure 75: Global energy storage battery shipment forecast (2019 to 2025E)	
Figure 76: China energy storage battery shipment forecast (2019 to 2025E)	96
Figure 77: China LFP cathode material production (2017 to 2023)	
Figure 78: Market share of LFP cathode material producers in China in 2022	
Figure 79: Aleees — LFP cathode material powder morphology	
Figure 80: Aleees — lithium IP licensor	
Figure 81: Aleees Patent and Technology License Fee	
Figure 82: Avenira — LFP plant schematic flow sheet	
Figure 83: 6K UniMelt® microwave plasma production system	
Figure 84: Nano One One-pot synthesis for lithium-ion battery cathode material precursors	
Figure 85: Standard cathode material process vs Nano One cathode material process	
Figure 86: IBU-tec LFP cathode material production plans	
Figure 87: IBU-tec LFP cathode material production process	
Figure 88: IBU-tec IDO indirectly heated rotary kiln	
Figure 89: Integrals Power — Cathode material production process	
Figure 90: LFP cathode material price April 2021 to April 2024	
Figure 91: Lithium carbonate price trend Jan 2020 to Jul 2024	
Figure 92: Comparison of price between lithium carbonate and LFP cathode (Jan 2020 to April 2023)	
Figure 93: Global demand for lithium iron phosphate cathode material (2021 to 2025F)	120

Tables

Table 1: LFP cathode material industry value chain	17
Table 2: Comparison of mainstream cathode materials used in high-performance lithium-ion batteries.	
Table 3: LFP Cathode Material Processing Methods & Raw Material Requirements	44
Table 4: Wanrun New Energy — Battery grade iron oxalate product specifications	
Table 5: Comparison of mainstream ferric phosphate principal production methodsm	51
Table 6: Wanrun New Energy — Iron phosphate product series	52
Table 7: Hubei Wanrun New Energy — Battery grade iron oxide product specifications	54
Table 8: Shenzhen Dynanonic — Ferric Nitrate Production Process	54
Table 9: Comparison of phosphoric acid preparation by thermal and wet processes	56
Table 10: Types and characteristics of wet phosphoric acid purification processes	
Table 11: Phosphoric acid product grades and applications	58
Table 12: Comparison of LFP cathode material products	60
Table 13: Hunan Yuneng New Energy Battery Material Co., Ltd — LFP cathode material products	61
Table 14: Shenzhen Dynanonic — Nano lithium phosphate products	62
Table 15: Wanrun New Energy — LFP cathode material product series and performance	
Table 16: Changzhou Liyuan — LFP cathode material S series products & performance indicators	65
Table 17: Changzhou Liyuan — LFP cathode material Lithium No. 1 product & performance indicators	65
Table 18: Anda Technology — LFP cathode material products	66
Table 19: Chongqing Terui - LFP cathode material products	66
Table 20: LFP-carbon composite cathode materials for lithium-ion battery (GB/T30835-2014)	67
Table 21: Lithium iron phosphate standard (YS/T 10127-2015)	68
Table 22: Nano lithium iron phosphate standard (GB/T 33822-2017)	69
Table 23: Lithium carbonate standard (GB/T 11075-2013)	71
Table 24: Battery-grade lithium carbonate standard (YS/T 582-2013)	72
Table 25: High purity lithium carbonate standard (YS/T 546-2021)	73
Table 26: Crude lithium carbonate standard (YS/T 1552-2022)	73
Table 27: Lithium carbonate made of brine standard (GB/T 23853-2022)	74
Table 28: Battery-grade iron phosphate standard (HG/T 4701—2021)	75
Table 29: Industrial phosphoric acid produced by thermal method (GB/T 2091-2008)	76
Table 30: Wet purification of phosphoric acid produced by solvent extraction (HG/T 4069-2022)	76
Table 31: Ammonium dihydrogen phosphate for battery minerals (HG/T 5742—2020)	77
Table 32: Mainstream auto companies using LFP batteries in new energy vehicles	84
Table 33: Comparison of mainstream auto company new energy vehicles models using LFP batteries	84
Table 34: Comparison of mainstream energy storage methods	88
Table 35: Comparison of sodium-ion battery vs. lithium-ion battery energy storage technical indicators	92
Table 36: Top 10 China LFP cathode material producers in 2022	97
Table 37: Major LFP cathode material producers and their customer relationships	98
Table 38: Cooperation between battery factories and LFP cathode enterprises	99
Table 39: Ternary cathode material companies plans to enter the LFP cathode material supply chain	100
Table 40: Titanium dioxide companies plan to enter the LFP cathode material supply chain	100
Table 41: Phosphate chemical companies plan to enter the LFP cathode material supply chain	101
Table 42: Aleees — LFP cathode material products	101
Table 43: Avenira LFP plant raw material consumption and utility rates	105
Table 44: Summary of the LFP scoping study key financial outcomes	106
Table 45: Assumed raw material costs	106
Table 46: IBUvolt®, LFP cathode material chemical and physical properties	
Table 47: Calculation of global demand for lithium iron phosphate cathode material	119
Table 48: Calculation of supply and demand of lithium iron phosphate material industry	120