**GOLDEN DRAGON CAPITAL** 

# PRECURSOR CATHODE ACTIVE MATERIAL (pCAM)

**Market Research Report** 



#### **Table of Contents**

| Execu  | utive Summary                                               | 2   |
|--------|-------------------------------------------------------------|-----|
| 1.0    | Introduction                                                | 8   |
| 2.0    | Product Characteristics and Specifications                  | 10  |
| 3.0    | Principal Production Methods                                |     |
| 3.1    | Raw Material Requirements                                   |     |
| 3      | 3.2 Processing Parameters which affect pCAM Production      | 25  |
| 3      | 3.2.1 Ammonia Concentration                                 |     |
| 3      | 3.2.2 pH Value                                              |     |
| 3      | 3.2.3 Reaction Temperature                                  |     |
| 3      | 3.3.4 Reaction Control of pCAM of Different Components      |     |
| 3      | 3.3.5 Reaction Time and Reaction Atmosphere                 |     |
| 3      | 3.3.6 Other Variables Affecting the pCAM Reaction Process   |     |
| 3.4    | pCAM Production Equipment                                   |     |
| 3      | 3.4.1 Reactor                                               |     |
| 3      | 3.4.2 Filtration and Washing Equipment                      |     |
| 3      | 3.4.3 Drying Equipment                                      | 52  |
| 3.5    | Future Production Process R&D Trends                        | 55  |
| 4.0    | Cash Cost Analysis                                          | 61  |
| 5.0    | Commercialisation                                           | 68  |
| 5.1    | Rise of pCAM Production                                     | 68  |
| 5.2    | Market Size Potential                                       |     |
| 6.0    | Competitive Landscape                                       | 74  |
| 6.1    | CNGR Advanced Material Co., Ltd                             | 78  |
| 6.2    | GEM Co., Ltd                                                | 94  |
| 6.3    | Zhejiang Huayou Cobalt Co., Ltd                             |     |
| 6.4    | Guangdong Brunp Recycling Technology Co., Ltd               | 117 |
| 6.4    | Lanzhou Jintong Energy Storage Power New Materials Co., Ltd | 119 |
| 6.6    | Overseas pCAM Companies                                     | 121 |
| Refer  | ences                                                       | 129 |
| Appe   | ndix: 50,000tpa Ternary pCAM — Case Example                 | 132 |
| Discla | aimer                                                       |     |

### **Figures**

| Figure 1-Washing principle of a lithium ion batten.                                                         | 0                |
|-------------------------------------------------------------------------------------------------------------|------------------|
| Figure I: working principle of a lithium-ion battery                                                        | 8                |
| Figure 2: Lithium-ion battery packing types                                                                 | 8                |
| Figure 3: pCAM is located within the lithium-ion battery midstream industry chain                           | 9                |
| Figure 4: pCAM is a black powder (illustrative)                                                             | 9                |
| Figure 5: pCAM SEM image (illustrative)                                                                     | 9                |
| Figure 6: pCAM co-precipitation principal processing flowsheet                                              | 14               |
| Figure 7: Continuous method principal processing flowsheet to produce pCAM                                  | 18               |
| Figure 8: Nickel sulfate hexahydrate (illustrative)                                                         | 19               |
| Figure 9: Cobalt sulfate heptahydrate (illustrative)                                                        | .20              |
| Figure 10: Manganese sulfate monohydrate (illustrative)                                                     | 21               |
| Figure 11: Sodium hydroxide (illustrative)                                                                  | 22               |
| Figure 12: Liquid ammonia solution (illustrative)                                                           | 22               |
| Figure 13: Comparison of electrochemical performance of large and small particle cathode materials          | .24              |
| Figure 14: The specific surface area of the pCAM directly affects the crystal form, capacity and re         | ate              |
| performance of the cathode material                                                                         | 25               |
| Figure 15: Process parameters that affect the physical and chemical properties of the pCAM                  | . 26             |
| Figure 16: High nickel pCAM with different ammonia concentrations (left: 2g/L and right: 7g/L)              | . 27             |
| Figure 17: Increasing ammonia concentration leads to a decrease in nickel content                           | .28              |
| Figure 18: Effect of ammonia concentration on pCAM, cathode and lithium-ion battery performance             | . 29             |
| Figure 19: Ammonia concentration and pH value of pCAM of different components                               | .30              |
| Figure 20: PCAM morphologies obtained by reaction at different pH                                           | .30              |
| Figure 21: SEM of primary particles with different morphologies agglomerated into secondary particles       | 31               |
| Figure 22: Influence of pH value on the performance of pCAM, cathode and lithium-ion battery                | 32               |
| Figure 23: At low temperature, the primary particles are small and dense, and at high temperature, the      | the              |
| primary particles are coarse (50 degrees on the left and 60 degrees on the right)                           | 33               |
| Figure 24: Temperature influence on pCAM, cathode and lithium-ion battery performance                       | 35               |
| Figure 25: High nickel pCAM require higher pH and ammonia concentrations                                    | .36              |
| Figure 26: Tap density gradually increases with the increase of reaction time                               | 37               |
| Figure 27: NCM pCAM without nitrogen protection presents agglomerates of different sizes                    | 37               |
| Figure 28: Increasing solid content makes pCAM morphology more regular and the surface of the second        | arv              |
| narticles more dense (left: 10% and right: 20%)                                                             | 38               |
| Figure 29: Effect of solid content on pCAM, cathode and lithium-ion battery performance                     | 39               |
| Figure 30: Delationship between stirring speed and tap density                                              | 40               |
| Figure 31: The lower the stirring speed the larger the size of the pCAM secondary particles                 | .40              |
| Figure 31: The lower the stirring speed, the larger the size of the pCAM secondary particles                |                  |
| Figure 32: Effect of the liquid on the merphology of the high nickel pCAM the precipitation time is 36b. (I | . <del>4</del> 2 |
| eil content is 9 Energy right; eil content is 2 nnm)                                                        | /.z              |
| Sincontent is 9.5ppm, right, on content is 2ppm)                                                            | .43              |
| Figure 34. Temperature control process                                                                      | .44              |
| Figure 35. Split-range temperature control method                                                           | .45              |
| Figure 36: PCAM production equipment investment structure                                                   | .45              |
| Figure 37: Schematic diagram of pCAM production line (intermittent method as an example)                    | .47              |
| Figure 38: Schematic diagram of the pCAM reactors I and 2                                                   | .48              |
| Figure 39: Filter press                                                                                     | .49              |
| Figure 40: Working principal diagram of centrifuge                                                          | .49              |
| Figure 41: Microporous filter                                                                               | .50              |
| Figure 42: Filter-wash two-in-one equipment                                                                 | .50              |
| Figure 43: Hot air circulation oven                                                                         | 52               |
| Figure 44: Working principal diagram of hot air circulation oven                                            | 52               |
| Figure 45: Disc dryer (left) and working principal of disc dryer (right)                                    | 53               |
| Figure 46: Working principal diagram of rotary drum dryer                                                   | 53               |
| Figure 47: Flash dryer                                                                                      | .54              |
| Figure 48: Working principal diagram of flash dryer                                                         | .54              |
| Figure 49: Ordinary polycrystalline/secondary spherical cathode material                                    | . 56             |

## **GOLDEN DRAGON CAPITAL**

| Figure 50: Single crystal cathode material                                                           | 57       |
|------------------------------------------------------------------------------------------------------|----------|
| Figure 51: Schematic diagram of lithium-ion battery self-discharge caused by magnetic foreign matter | 58       |
| Figure 52: Schematic diagram of core-shell pCAM and ternary cathode structure                        |          |
| Figure 53: Schematic diagram of gradient structure pCAM                                              |          |
| Figure 54: Schematic diagram of radial ternary pCAM structure                                        | 60       |
| Figure 55: Ternary power battery cost structure (taking the NCM523 battery cell as an example)       | 61       |
| Figure 56: Ternary cathode material cost structure (taking the NCM523 battery cell as an example)    | 62       |
| Figure 57: nCAM raw materials account for a high proportion                                          | 67       |
| Figure 58: Breakdown of operating costs of major Chinese nCAM (2021)                                 | 63       |
| Figure 59: Nickel and cobalt sulfate prices (unit: x10,000 CNV per toppe)                            | 65       |
| Figure 59: Nickel and Cobait surface prices (unit: Xi0,000 CNY per tonne).                           | 05       |
| Figure 60. Terriary peak prices follow meter/cobait price changes (unit. 10,000 CNY per torme)       | 05<br>67 |
| Figure 61: NCM911 vs NCM527 and NCM911 vs NCM622 price differences (Oct 2019 to Oct 2022)            |          |
| Figure 62. NCMBITVS NCM525 and NCMBITVS NCM622 price differences (Oct-2018 to Oct-2022)              |          |
| Figure 63: Global new energy vehicle sales forecast (2019 to 2026E)                                  | 68       |
| Figure 64: Global Installed capacity of lithium power batteries forecast (2019 to 2026E)             | 69       |
| Figure 65: China ternary battery installed capacity share (2021 to 2024E)                            | 69       |
| Figure 66: Global pCAM production (2019 to 2023)                                                     | 70       |
| Figure 67: China ternary cathode material production (2019 to 2023)                                  | 70       |
| Figure 68: China single crystal ternary cathode material production (2019 to 2023)                   | 71       |
| Figure 69: The energy density of high-nickel batteries has increased significantly                   | 72       |
| Figure 70: High-nickel content of ternary pCAM continues to advance                                  | 72       |
| Figure 71: Prices of ternary battery cells and LFP battery cells (CNY/Wh)                            | 73       |
| Figure 72: Global pCAM shipments forecast (2021 to 2026E)                                            | 74       |
| Figure 73: China pCAM competitive landscape (2023)                                                   | 75       |
| Figure 74: Production capacity of leading pCAM companies (2019 to 2023E)                             | 75       |
| Figure 75: Gross profit margins of leading pCAM companies (2019 to 2022)                             | 76       |
| Figure 76: CNGR three production bases in Guizhou, Hunan and Guangxi                                 | 79       |
| Figure 77: CNGR — Annual shipments of ternary pCAM (2020 to 2023-H1)                                 | 81       |
| Figure 78: CNGR — Effective pCAM and cobalt tetraoxide production capacity and forecast              | 81       |
| Figure 79: CNGR — unit tonne selling price is at the forefront among peers                           | 82       |
| Figure 80: pCAM processing fee per tonne (unit: x10,000 CNY)                                         | 82       |
| Figure 81: The ratio of nickel and pCAM sales prices is currently over 65%                           | 83       |
| Figure 82: pCAM industry gross profit margin, the company is at a disadvantage among peers           | 84       |
| Figure 83: CNGR — Sales share of the top five customers in 2022                                      | 88       |
| Figure 84: CNGR sales to LGES (2018 to 2021)                                                         | 89       |
| Figure 85: CNGR — Main customers                                                                     | 89       |
| Figure 86: CNGR — R&D expenses (2017 to 2022-H1)                                                     | 90       |
| Figure 87: pCAM industry expense ratios                                                              | 91       |
| Figure 88: CNGR — Operating income (2019 to 2024-Q1)                                                 | 91       |
| Figure 89: CNGR — New profit attributable to parent company (2019 to 2024-01)                        | 92       |
| Figure 90: CNGR — Gross profit margin and net profit margin (2019 to 2024-01)                        | 92       |
| Figure 91: CNGR — Expense ratios (2019 to 2024-01)                                                   | 93       |
| Figure 92: GEM — Business units                                                                      | .94      |
| Figure 93: GEM core-shell pCAM morphology                                                            | 94       |
| Figure 94: GEM — Ultra-bigh nickel products                                                          | 95       |
| Figure 95: CEM — Quaternary products                                                                 | 95       |
| Figure 96: CEM — Core-shell-concentration gradient ternary materials                                 | 96       |
| Figure 97: Schematic diagram of core-shell structure and full gradient structure                     | 0C       |
| Figure 98: CEM Co. 1 td — nCAM production bases in China                                             | 0C       |
| Figure 99: CEM terpary pCAM production $2303 \pm 2023$ -H1                                           | 0C       |
| Figure 30. CEM because production (2013 to 2023-11)                                                  | 00       |
| Figure 100. CEM PLAM production shipment structure (2019 to 2023-FI)                                 | 00       |
| Figure 101. $OLM = P(AM)$ production consists forecast (2022 to 2026)                                | 99       |
| Figure 102. CEM's alobal new operative material supply chain (illustrative)                          | 100      |
| Figure 105. OEM S global new energy material supply chain (Illustrative)                             | . 101    |

## **GOLDEN DRAGON CAPITAL**

| Figure 104: Proportion of GEM top five customers (unit: million CNY, %)                         | 102         |
|-------------------------------------------------------------------------------------------------|-------------|
| Figure 105: GEM — New energy battery materials revenue structure (2019 to 2023-H1)              | 105         |
| Figure 106: GEM — Gross profit margin of each new energy battery materials business             | 105         |
| Figure 107: Huayou Cobalt — Overview of the ten-year layout of the ternary pCAM industry        |             |
| Figure 108: Huayou Cobalt — pCAM products                                                       |             |
| Figure 109: Huayou Cobalt — Ternary pCAM production capacity forecast (2022E to 2025E)          |             |
| Figure 110: Huayou Cobalt — Business pillar coverage                                            | 110         |
| Figure 111: Sales volume of major Chinese pCAM manufacturers (2018 to 2021)                     | 111         |
| Figure 112: Price gap between CNGR and Huayou is tightening year by year)                       | 111         |
| Figure 113: Comparison of ternary pCAM gross profit margins of different companies (2018 to 202 | 23)112      |
| Figure 114: Huayou Cobalt — pCAM gross profit per tonne (10,000 CNY)                            | 112         |
| Figure 115: Huayou Cobalt — Ternary pCAM cost breakdown                                         | 113         |
| Figure 116: Huayou Cobalt — Long-term ternary pCAM purchase orders (2022 to 2025E)              | 115         |
| Figure 117: Brunp Recycling — Business layout                                                   | 117         |
| Figure 118: Jiang Yu, director of Jinchang Factory of Lanzhou Jintong Energy Storage Power Ne   | w Materials |
| Co., Ltd. of Jinchuan Group, introduces the ternary pCAM products. Photo by Li Deyu             | 120         |
| Figure 119: Ternary pCAM is a black solid powder. Photo by Li Deyu                              | 120         |
| Figure 120: Staff of Lanzhou Jintong Energy Storage Power New Materials Co., Ltd. of Jinchuar   | n Group are |
| packing ternary pCAM products. Photo by Li Deyu                                                 | 120         |
| Figure 121: BASF proposed pCAM, CAM, and recycling facility in Bécancour, Quebec, Canada        | 121         |
| Figure 122: Umicore — Kokkola plant in Finland                                                  | 122         |
| Figure 123: Umicore — Land plot reserved for pCAM production in Ontario, Canada                 | 122         |
| Figure 124: POSCO — Ternary pCAM (SEM Image)                                                    | 124         |
| Figure 125: POSCO — Ternary pCAM production line                                                | 124         |
| Figure 126: pCAM plant (left) and cathode material production plant (right)                     | 126         |
| Figure 127: Tanaka Chemical Corp — Ternary pCAM                                                 | 127         |
| Figure 128: Tanaka Chemical Corp — Nickel-based materials                                       | 128         |

#### **Tables**

| Table 1: GEM Co., Ltd — pCAM NCM 3 Series product specifications                                      | 10   |
|-------------------------------------------------------------------------------------------------------|------|
| Table 2: GEM Co., Ltd — pCAM NCM 5 Series product specifications                                      | 10   |
| Table 3: GEM Co., Ltd — pCAM NCM 6 Series product specifications                                      | 11   |
| Table 4: GEM Co., Ltd — pCAM NCM 7 Series product specifications                                      | 11   |
| Table 5: GEM Co., Ltd — pCAM NCM 8 Series product specifications                                      | 12   |
| Table 6: GEM Co., Ltd — pCAM NCA Series product specifications                                        | 12   |
| Table 7: Comparison of mainstream ternary pCAM production methods                                     | 13   |
| Table 8: Example of testing indicators for pCAM products                                              | 19   |
| Table 9: Nickel sulfate for battery materials — China National Product Standard (HG/T 5919-2021)      | 20   |
| Table 10: Cobalt sulfate for battery materials — China National Product Standard (HG/T 5918-2021)     | 20   |
| Table 11: Manganese sulfate for battery materials — China National Product Standard (HG/T 4823-2023). | 21   |
| Table 12: Sodium hydroxide for industrial use — China National Product Standard (GB/T 209-2018)       | 22   |
| Table 13: Ammonia solution— China National Product Standard (GB/T 631-2007)                           | 23   |
| Table 14: pCAM particle size determines the particle size of cathode materials                        | 24   |
| Table 15: Factors affecting pCAM end-product performance                                              | 26   |
| Table 16: The main key pieces of equipment to produce ternary pCAM                                    | 46   |
| Table 17: Common reactor product performance indicators                                               | 48   |
| Table 18: Reactor volume and production capacity of a manufacturer                                    | 48   |
| Table 19: Comparison of the mainstream filtering and washing equipment used in pCAM production        | 51   |
| Table 20: Comparison of the mainstream drying equipment used in pCAM production                       | 55   |
| Table 21: Progress in the development of new technologies by leading pCAM manufacturers               | 61   |
| Table 22: Upstream nickel resource layout of pCAM manufacturers (nickel content: tonnes)              | 64   |
| Table 23: Comparison between pyrometallurgy and hydrometallurgy smelting processes                    | 64   |
| Table 24: Impact of material price changes on the total cost of pCAM (90% of material cost)           | 66   |
| Table 25: Estimated cost per kWh of ternary cathode material products                                 | 66   |
| Table 26: NCM811 has certain material cost advantages (average price in October 2022)                 | 68   |
| Table 27: Ternary cathode material product performance with different nickel content                  | 71   |
| Table 28: Main characteristics of ternary single crystal and polycrystalline materials                | 71   |
| Table 29: List of ternary pCAM companies and their customers                                          | 76   |
| Table 30: Comparison of ternary cathode materials with different crystal forms                        | 77   |
| Table 31: CNGR — pCAM product portfolio                                                               | 78   |
| Table 32: CNGR — pCAM production bases                                                                | 80   |
| Table 33: CNGR — Nickel front-end smelting layout                                                     | 85   |
| Table 34: CNGR — Nickel production forecast                                                           | 85   |
| Table 35: CNGR — Nickel back-end smelting lavout                                                      | 86   |
| Table 36: CNGR — Nickel self-supply ratio first increased and then decreased                          | 86   |
| Table 37: pCAM sensitivity analysis (self-supply rate and nickel sulfate market price to NCM81) pCAM  | per  |
| tonne gross profit)                                                                                   | 87   |
| Table 38: CNGR — pCAM sensitivity analysis (70% NCM811 and 30% NCM622)                                | 87   |
| Table 39: CNGR — Signed strategic supply agreements                                                   |      |
| Table 40: CNGR — Core R&D technologies and application products of ternary pCAM                       | 90   |
| Table 41: Comparison of key indicators of China ternary pCAM companies                                | 97   |
| Table 42 <sup>°</sup> Strategic framework agreements between GEM and cathode material companies       | 101  |
| Table 43: GEM — R&D projects related to pCAM and cathode materials                                    | .104 |
| Table 44: Huavou Cobalt — Ternary pCAM products and processes                                         | .107 |
| Table 45: Huavou Cobalt — Ternary pCAM production bases                                               | 109  |
| Table 46: Huayou Cobalt — Ternary pCAM customers and supply agreements                                |      |
| Table 47: Brunp Recycling — pCAM products                                                             |      |
|                                                                                                       |      |