TERNARY CATHODE MATERIAL

Market Research Report

Table of Contents

Executiv	e Summary	2
1.0 I	ntroduction	12
1.1	Ternary Cathode Material Industry Development Trends	12
1.2	Lithium-lon Battery Technology	15
1.3	Comparison of Mainstream Cathode Materials	21
1.4	Cathode Positioning within the Industry Chain	23
2.0	Ternary Cathode Material	24
2.1	Layered Cathode Oxide Structure	24
2.2	Ternary Material Working Principal	27
2.3	Ternary Material Product Performance	31
2.3.	l Advantages	32
2.3.	2 Disadvantages	34
3.0	Ternary Cathode Material Processing Methods	40
3.1	Overview	40
3.1.1	Solid State Method	41
3.1.2	2 Co-precipitation Method	42
3.1.3	Sol-gel Method	43
3.1.4	4 Hydrothermal Method	43
3.1.5	Combustion Method	43
3.1.6	Spray Drying Method	44
3.2	Synthesizing Ternary Materials by Hydroxide Co-precipitation-Solid Phase Calcination	44
3.2.	Production Method	44
3.2.	2 Raw Materials	50
3.2.	3 Lithiation Mixing	54
3.2.	4 Loading	57
3.2.	5 Calcination Process	59
3.2.	6 Crushing	63
3.2.	7 Classification	64
3.2.	8 Iron Removal	65
3.2.	9 Washing	65
3.2.	10 Packing	67
3.3	Synthesizing NCA Ternary Materials	68
3.3.	Production Method	68
3.4	Ternary Product Modification Methods	69
3.4.	1 Element Doping Method	69
3.4.	2 Surface Coating Method	70
3.4.	3 Core Shell Structure	71
3.4.	4 Single Crystal	72

4.0	Ch	inese Ternary Cathode Material Standards	76
4.1	NC	M Ternary Cathode Material	77
4	.1.1.	YS/T 798-2012 Lithium Nickel Cobalt Manganese Oxide	77
4	.1.2	YS/T 1448-2021 Coated Lithium Nickel Cobalt Manganese Oxide	79
4	.1.3	YS/T 1520-2022 Doped Lithium Nickel Cobalt Manganese Oxide	80
4.2	NC	A Ternary Cathode Material	82
4	.2.1	YS/T 1125-2023 Lithium Nickel Cobalt Aluminium Oxide	82
4	.2.2	YS/T 1614-2023 Doped and Coated Lithium Nickel Cobalt Aluminium Oxide	84
5.0	Co	mpetitive Landscape	87
5.1	Ch	ina Ternary Cathode Material Production	87
5.2	Ov	erseas Ternary Cathode Material Production	92
5	.2.1	Japan	92
5	.2.2	South Korea	95
5	.2.3	United States	102
5	.2.4	Europe	103
6.0	Ма	rket Pricing	107
6.1	Te	rnary Cathode Material	107
7.0	Ма	rket Size Forecast	110
Refere	ences		113
Apper	ndix 1: I	Ningbo Ronbay New Energy Technology Co., LtdLtd	118
1.0	Ning	bo Ronbay New Energy Technology Co., Ltd	119
1.1	Co	rporate Overview	119
1.2	Te	rnary Cathode Material Business	120
1.3	Fir	ancials (1 USD ~ 7 CNY)	136
Discla	imer		141

Figures

Figure 1: Transition metal characteristics of NCM cathode material	12							
Figure 2: Timeline of the development of NCM cathode material from low Ni content to high Ni cor								
(source: Wang, X. et al 2020)								
					Figure 6: Component materials and auxiliary materials used to manufacture cathode material			
Figure 9: Lithium-ion battery component material cost structure								
Figure 10: Cost structure of new energy vehicles								
					Figure 13: Discharge profiles of cathode material types			
					Figure 14: Cathode positioning within the industry chain			
Figure 15: Cathode material industry chain								
Figure 16: Representative O3 structure								
Figure 17: (a) Schematic of NCM111 crystal structure (b) Schematic of ion-ordering in NMC111 TM layers	25							
Figure 18: NCM crystal structure showing Wyckoff positions	26							
Figure 19: NCM lithium-ion pathway								
Figure 20: NCM Li-ion diffusion, tetrahedral site pathway (route I), and oxygen dumbbell pathway (rou	ite II)							
Figure 21 : Schematic band structure depicting the various transition metal redox energy levels	28							
Figure 22 : TM-O octahedral complexes in NCM	29							
Figure 23: Occupation percentage of Ni^{2+}/Ni^{3+} and Co^{2+}/Co^{3+} cations as the NCM composition varies								
Figure 24 : Typical profile of differential capacity vs. electrode voltage for Ni rich NCM	31							
Figure 25 : Discharge capacity, thermal stability & capacity retention of NCM material with differen	nt Ni							
contents	32							
Figure 26 : Voltage vs charge/discharge capacity curves of NCM cathode material	33							
Figure 27 : Problems and challenges of Ni-rich layered oxides	35							
Figure 28: Increasing the Ni content effects capacity retention	35							
Figure 29 : Microcracking generation and electrolyte penetration	39							
Figure 30 : DSC thermal decomposition temperature of NCM cathode material (x=Ni molar fraction)	40							
Figure 31: Comparison of low to medium nickel and high-nickel ternary cathode material processing								
Figure 32: pCAM principal production processing flowsheet	50							
Figure 33: Relationship between the specific capacity, cycle performance and lithiation ratio of the ter	nary							
cathode material NCM523	53							
Figure 34: Schematic diagram of lithium mixing process	54							
Figure 35: Characteristics of ternary cathode material mixing equipmentent	55							
Figure 36: Tilt drum mixer	55							
Figure 37: High-speed mixer	56							
Figure 38: Sagger used for calcination of ternary cathode materials	57							
Figure 39: Sample picture of ternary cathode material sagger								
Figure 40 : Comparison of calcination temperatures of several common ternary materials	60							
Figure 41: Pusher kiln picture	61							
Figure 42: Roller kiln picture								
Figure 43: Four-row single-layer roller kiln (left), double-row three-layer roller kiln (right)	62							
Figure 44: Particle size distribution of materials before classification								
Figure 45: Particle size distribution of materials after classification	64							
Figure 46: The effect of the number of washing times on the pH of high nickel ternary cathode	66							
Figure 47: The morphology of high nickel ternary cathode before washing	66							
Figure 48: The morphology of high nickel ternary material after washing								
Figure 49: Finished ternary material packaging diagram	67							

Figure 50: Ternary cathode material (illustrative)	67
Figure 51: NCA cathode material production route with NCA precursor	68
Figure 52: NCA cathode material production route with NiCo precursor and Al	68
Figure 53: NCA cathode material production route with NiCo precursor and Al ₂ O ₃	68
Figure 54: Schematic ternary product modification by element doping and surface coating	69
Figure 55: Inorganic coating process for NCM cathode materials	
Figure 56: Difference between the core-shell and concentration-gradient Ni-rich ternary material	72
Figure 57: Morphological and interfacial changes of polycrystalline and single crystalline cathode du	
electrode pressing and electrochemical cycling	
Figure 58: SEM image comparison of single crystal (left) and polycrystalline (right) cathode materials	73
Figure 59: Preparation processes of single crystal high-nickel cathode materials	
Figure 60: Changes in China's ternary and LFP battery market share (2017 to 2023)	
Figure 61: China cathode material shipments (2014 to 2023)	
Figure 62: China cathode material shipments by type x10,000t (2014 to 2023)	
Figure 63: China cathode material product market share (2023)	
Figure 64: Global ternary cathode material production (2022 and 2023)	
Figure 65: China ternary cathode material production (2018 to 2023)	
Figure 66: China ternary cathode material market structure (2020 to 2023)	90
Figure 67: China ternary cathode material market share (2023)	
Figure 68: Shipment market share of each ternary cathode material product (2020 to 2023)	
Figure 69: Sumitomo Metal Mining three major businesses	
Figure 70: Sumitomo Metal Mining cathode material production forecast (2025 to 2030)	
Figure 71: Sumitomo Metal Mining cathode material customer structure	
Figure 72: Nichia Corporation cathode materials	
Figure 73: EcoPro BM's CAM 7 cathode manufacturing facility in Pohang, South Korea	
Figure 74: EcoPro BM NCA energy density	96
Figure 75: EcoPro BM NCM core shell gradient technology	
Figure 76: POSCO Future M planned production capacity (2023E to 2026E)	
Figure 77: POSCO Future M domestic sites	
Figure 78: POSCO Future M Gwangyang cathode material plantplant	
Figure 79: POSCO Future M Pohang cathode material plant	
Figure 80: LG Chem Cheongju cathode material plantplant	100
Figure 81: LG Chem manufacturing process of cathode materials	
Figure 82: L&F NCM cathode materials	
Figure 83: L&F business sites	
Figure 84: BASF's global layout of battery materials sites	
Figure 85: Umicore's 20-year innovation process in the field of cathode materials	
Figure 86: Umicore global layout of battery materials sites	
Figure 87: Jiangmen Umicore Changxin New Materials Co., Ltd	106
Figure 88: Umicore Cheonan South Korea	106
Figure 89: Umicore Nysa gigafactory Poland	
Figure 90: Simplified overview of the CAM production process in Nysa	
Figure 91: Ternary cathode material prices Dec 2019 to Jun 2024 (CNY per tonne)	109
Figure 92: Ternary pCAM prices Dec 2019 to Jun 2024 (CNY per tonne)	109
Figure 93: Lithium salt prices Jan 2019 to Jul 2024 (CNY per tonne)	110

Tables

Table 1: Classification and composition of NCM and NCA cathode materials	14
Table 2: Comparison of mainstream ternary cathode material products	14
Table 3: Comparison of mainstream cathode materials used in high-performance lithium-ion batteries	es22
Table 4: Comparison of the characteristics of Mn, Co, and Ni in NMC cathodes	28
Table 5: Comparison of various ternary cathode material synthesis methods	41
Table 6: Main raw and auxiliary materials of ternary material production line	46
Table 7: Summary of the core process and equipment used in the preparation of ternary materials	47
Table 8: Comparison of common ternary and high nickel ternary processes and equipment	47
Table 9: Main factors affecting the capacity of ternary materials	48
Table 10: Main factors affecting the rate of ternary materials	49
Table 11: Main factors affecting the specific surface area of ternary materialsmaterials	50
Table 12: Lithium source selection for high-nickel ternary cathode materials	52
Table 13: Effects of different lithium ratios of NCM622 materials on material cycle performance	53
Table 14: Effects of different types of additives	54
Table 15: Differences between low-medium and high nickel ternary cathode lithium mixing processe	s54
Table 16: Comparison of the main advantages and disadvantages of ternary material mixing equipme	ent. 56
Table 17: Comparison of performance of saggers of different materials	58
Table 18: Differences between the calcination processes of high-nickel ternary cathodes and low-mo	edium
ternary cathodes	
Table 19: Comparison of push plate kiln and roller kiln	
Table 20: Requirements for kiln equipment for high-nickel and low-medium nickel ternary ca	ithode
materials	62
Table 21: Performance comparison of common crushing equipment	63
Table 22: Sources of metal impurities in the preparation of ternary cathode materials	65
Table 23: Comparison of the advantages and disadvantages of two types of iron removal equipment	65
Table 24: Research and mass production progress of high-nickel single crystal products of leading	
cathode companies	
Table 25: Relevant standards for lithium nickel cobalt manganese oxide	
Table 26: Relevant standards for lithium nickel cobalt aluminium oxideoxide	
Table 27: Major China ternary cathode material companies' production capacity (2021 to 2025E)	
Table 28: China ternary cathode material market share concentration	
Table 29: Major China ternary cathode material companies' productsproducts	
Table 30: Sumitomo Metal Mining NCA capacity expansion 2015 to 2019	
Table 31: POSCO Future M Co., Ltd — Cathode material products	
Table 32: 3M main NCM patents	
Table 33: BASF SE battery material locations	
Table 34: Global demand for ternary lithium-ion batteries	
Table 35: Calculation of global demand for ternary cathode materials (1 USD ~ 7 CNY)	111